
E04 – Minimizing or Maximizing a Function

E04LYF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

E04LYF is an easy-to-use modified-Newton algorithm for finding a minimum of a function,
F (x1, x2, . . . , xn) subject to fixed upper and lower bounds on the independent variables, x1, x2, . . . , xn

when first and second derivatives of F are available. It is intended for functions which are continuous and
which have continuous first and second derivatives (although it will usually work even if the derivatives
have occasional discontinuities).

2 Specification

SUBROUTINE E04LYF(N, IBOUND, FUNCT2, HESS2, BL, BU, X, F, G, IW,
1 LIW, W, LW, IUSER, USER, IFAIL)
INTEGER N, IBOUND, IW(LIW), LIW, LW, IUSER(∗), IFAIL
real BL(N), BU(N), X(N), F, G(N), W(LW), USER(∗)
EXTERNAL FUNCT2, HESS2

3 Description

This routine is applicable to problems of the form:

Minimize F (x1, x2, . . . , xn) subject to lj ≤ xj ≤ uj , j = 1, 2, . . . , n

when first and second derivatives of F (x) are available.

Special provision is made for problems which actually have no bounds on the xj , problems which have
only non-negativity bounds and problems in which l1 = l2 = . . . = ln and u1 = u2 = . . . = un. The user
must supply a subroutine to calculate the values of F (x) and its first derivatives at any point x and a
subroutine to calculate the second derivatives.

From a starting point supplied by the user there is generated, on the basis of estimates of the curvature
of F (x), a sequence of feasible points which is intended to converge to a local minimum of the constrained
function.

4 References

[1] Gill P E and Murray W (1976) Minimization subject to bounds on the variables NPL Report NAC
72 National Physical Laboratory

5 Parameters

1: N — INTEGER Input

On entry: the number n of independent variables.

Constraint: N ≥ 1.

2: IBOUND — INTEGER Input

On entry: indicates whether the facility for dealing with bounds of special forms is to be used. It
must be set to one of the following values:

IBOUND = 0

if the user will be supplying all the lj and uj individually,

[NP3390/19/pdf] E04LYF.1

E04LYF E04 – Minimizing or Maximizing a Function

IBOUND = 1

if there are no bounds on any xj .

IBOUND = 2

if all the bounds are of the form 0 ≤ xj .

IBOUND = 3

if l1 = l2 = . . . = ln and u1 = u2 = . . . = un.

Constraint: 0 ≤ IBOUND ≤ 3.

3: FUNCT2 — SUBROUTINE, supplied by the user. External Procedure

This routine must be supplied by the user to calculate the values of the function F (x) and its first

derivatives
∂F

∂xj

at any point x. It should be tested separately before being used in conjunction with

E04LYF (see the the Chapter Introduction).

Its specification is:

SUBROUTINE FUNCT2(N, XC, FC, GC, IUSER, USER)
INTEGER N, IUSER(∗)
real XC(N), FC, GC(N), USER(∗)

1: N — INTEGER Input
On entry: the number n of variables.

2: XC(N) — real array Input
On entry: the point x at which the function and its derivatives are required.

3: FC — real Output
On exit: the value of the function F at the current point x.

4: GC(N) — real array Output
On exit: GC(j) must be set to the value of the first derivative ∂F

∂xj
at the point x, for

j = 1, 2, . . . , n.

5: IUSER(∗) — INTEGER array User Workspace
6: USER(∗) — real array User Workspace

FUNCT2 is called from E04LYF with the parameters IUSER and USER as supplied to E04LYF.
The user is free to use the arrays IUSER and USER to supply information to FUNCT2 as an
alternative to using COMMON.

FUNCT2 must be declared as EXTERNAL in the (sub)program from which E04LYF is called.
Parameters denoted as Input must not be changed by this procedure.

4: HESS2 — SUBROUTINE, supplied by the user. External Procedure

This routine must be supplied by the user to evaluate the elements Hij = (∂2F)/(∂xi∂xj) of the
matrix of second derivatives of F (x) at any point x. It should be tested separately before being
used in conjunction with E04LYF (see the Chapter Introduction).

Its specification is:

SUBROUTINE HESS2(N, XC, HESLC, LH, HESDC, IUSER, USER)
INTEGER N, LH, IUSER(∗)
real XC(N), HESLC(LH), HESDC(N), USER(∗)

E04LYF.2 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04LYF

1: N — INTEGER Input
On entry: the number n of variables.

2: XC(N) — real array Input
On entry: the point x at which the derivatives are required.

3: HESLC(LH) — real array Output
On exit: HESS2 must place the strict lower triangle of the second derivative matrix H in
HESLC, stored by rows, i.e., set HESLC((i − 1)(i − 2)/2 + j) = ∂2F

∂xi∂xj
for i = 2, 3, . . . , n;

j = 1, 2, . . . , i − 1. (The upper triangle is not required because the matrix is symmetric.)

4: LH — INTEGER Input
On entry: the length of the array HESLC.

5: HESDC(N) — real array Output
On exit: HESDC must contain the diagonal elements of the second derivative matrix, i.e., set
HESDC(j) = ∂2F

∂x2
j

for j = 1, 2, . . . , n.

6: IUSER(∗) — INTEGER array User Workspace
7: USER(∗) — real array User Workspace

HESS2 is called from E04LYF with the parameters IUSER and USER as supplied to E04LYF.
The user is free to use the arrays IUSER and USER to supply information to HESS2 as an
alternative to using COMMON.

HESS2 must be declared as EXTERNAL in the (sub)program from which E04LYF is called.
Parameters denoted as Input must not be changed by this procedure.

5: BL(N) — real array Input/Output

On entry: the lower bounds lj .

If IBOUND is set to 0, BL(j) must be set to lj , for j = 1, 2, . . . , n. (If a lower bound is not specified
for any xj , the corresponding BL(j) should be set to −106.)

If IBOUND is set to 3, the user must set BL(1) to l1; E04LYF will then set the remaining elements
of BL equal to BL(1).

On exit: the lower bounds actually used by E04LYF.

6: BU(N) — real array Input/Output

On entry: the upper bounds uj.

If IBOUND is set to 0, BU(j) must be set to uj , for j = 1, 2, . . . , n. (If an upper bound is not
specified for any xj the corresponding BU(j) should be set to 106.)

If IBOUND is set to 3, the user must set BU(1) to u1; E04LYF will then set the remaining elements
of BU equal to BU(1).

On exit: the upper bounds actually used by E04LYF.

7: X(N) — real array Input/Output

On entry: X(j) must be set to a guess at the jth component of the position of the minimum, for
j = 1, 2, . . . , n. The routine checks the gradient and the Hessian matrix at the starting point, and
is more likely to detect any error in the user’s programming if the initial X(j) are non-zero and
mutually distinct.

On exit: the lowest point found during the calculations. Thus, if IFAIL = 0 on exit, X(j) is the jth
component of the position of the minimum.

[NP3390/19/pdf] E04LYF.3

E04LYF E04 – Minimizing or Maximizing a Function

8: F — real Output

On exit: the value of F (x) corresponding to the final point stored in X.

9: G(N) — real array Output

On exit: the value of ∂F
∂xj

corresponding to the final point stored in X, for j = 1, 2, . . . , n; the value
of G(j) for variables not on a bound should normally be close to zero.

10: IW(LIW) — INTEGER array Workspace
11: LIW — INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04LYF is
called.

Constraint: LIW ≥ N + 2.

12: W(LW) — real array Workspace
13: LW — INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04LYF is
called.

Constraint: LW ≥ max(N× (N+7),10).

14: IUSER(∗) — INTEGER array User Workspace

Note: the dimension of the array IUSER must be at least 1.

IUSER is not used by E04LYF, but is passed directly to FUNCT2 and HESS2 and may be used to
pass information to those routines.

15: USER(∗) — real array User Workspace

Note: the dimension of the array USER must be at least 1.

USER is not used by E04LYF, but is passed directly to FUNCT2 and HESS2 and may be used to
pass information to those routines.

16: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL �= 0 on exit,
users are recommended to set IFAIL to −1 before entry. It is then essential to test the value of
IFAIL on exit. To suppress the output of an error message when soft failure occurs, set IFAIL to 1.

6 Error Indicators and Warnings

Errors or warnings specified by the routine:

IFAIL = 1

On entry, N < 1,

or IBOUND < 0,

or IBOUND > 3,

or IBOUND = 0 and BL(j) > BU(j) for some j,

or IBOUND = 3 and BL(1) > BU(1),

or LIW < N + 2,

or LW < max(10,N× (N+7)).

E04LYF.4 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04LYF

IFAIL = 2

There have been 50 × N function evaluations, yet the algorithm does not seem to be converging.
The calculations can be restarted from the final point held in X. The error may also indicate that
F (x) has no minimum.

IFAIL = 3

The conditions for a minimum have not all been met but a lower point could not be found and the
algorithm has failed.

IFAIL = 4

Not used. (This value of the parameter is included so as to make the significance of IFAIL = 5
etc. consistent in the easy-to-use routines.)

IFAIL = 5, 6, 7 and 8

There is some doubt about whether the point x found by E04LYF is a minimum. The degree of
confidence in the result decreases as IFAIL increases. Thus, when IFAIL = 5 it is probable that
the final x gives a good estimate of the position of a minimum, but when IFAIL = 8 it is very
unlikely that the routine has found a minimum.

IFAIL = 9

In the search for a minimum, the modulus of one or the variables has become very large (∼ 106).
This indicates that there is a mistake in FUNCT2 or HESS2, that the user’s problem has no finite
solution, or that the problem needs rescaling (see Section 8).

IFAIL = 10

It is very likely that the user has made an error in forming the gradient.

IFAIL = 11

It is very likely that the user has made an error in forming the second derivatives.

If the user is dissatisfied with the result (e.g., because IFAIL = 5, 6, 7 or 8), it is worth restarting the
calculations from a different starting point (not the point at which the failure occurred) in order to avoid
the region which caused the failure.

7 Accuracy

When a successful exit is made then, for a computer with a mantissa of t decimals, one would expect to
get about t/2− 1 decimals accuracy in x, and about t− 1 decimals accuracy in F , provided the problem
is reasonably well scaled.

8 Further Comments

The number of iterations required depends on the number of variables, the behaviour of F (x) and the
distance of the starting point from the solution. The number of operations performed in an iteration of
E04LYF is roughly proportional to n3 + O(n2). In addition, each iteration makes one call of HESS2 and
a least one call of FUNCT2. So, unless F (x), the gradient vector and the matrix of second derivatives
can be evaluated very quickly, the run time will be dominated by the time spent in FUNCT2 and HESS2.

Ideally the problem should be scaled so that at the solution the value of F (x) and the corresponding
values of x1, x2,n are each in the range (−1, +1), and so that at points a unit distance away from the
solution, F is approximately a unit value greater than at the minimum. It is unlikely that the user will
be able to follow these recommendations very closely, but it is worth trying (by guesswork), as sensible
scaling will reduce the difficulty of the minimization problem, so that E04LYF will take less computer
time.

[NP3390/19/pdf] E04LYF.5

E04LYF E04 – Minimizing or Maximizing a Function

9 Example

A program to minimize

F = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)4

subject to
1 ≤ x1 ≤ 3

−2 ≤ x2 ≤ 0
1 ≤ x4 ≤ 3.

starting from the initial guess (3, −1, 0, 1). (In practice, it is worth trying to make FUNCT2 and HESS2
as efficient as possible. This has not been done in the example program for reasons of clarity.)

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* E04LYF Example Program Text.
* Mark 18 Release. NAG Copyright 1997.
* .. Parameters ..

INTEGER N, LIW, LW
PARAMETER (N=4,LIW=N+2,LW=N*(N+7))
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Local Scalars ..
real F
INTEGER IBOUND, IFAIL, J

* .. Local Arrays ..
real BL(N), BU(N), G(N), USER(1), W(LW), X(N)
INTEGER IUSER(1), IW(LIW)

* .. External Subroutines ..
EXTERNAL E04LYF, FUNCT2, HESS2

* .. Executable Statements ..
WRITE (NOUT,*) ’E04LYF Example Program Results’
X(1) = 3.0e0
X(2) = -1.0e0
X(3) = 0.0e0
X(4) = 1.0e0
IBOUND = 0
BL(1) = 1.0e0
BU(1) = 3.0e0
BL(2) = -2.0e0
BU(2) = 0.0e0

*
* X(3) is unconstrained, so we set BL(3) to a large negative
* number and BU(3) to a large positive number.
*

BL(3) = -1.0e6
BU(3) = 1.0e6
BL(4) = 1.0e0
BU(4) = 3.0e0
IFAIL = 1

*
CALL E04LYF(N,IBOUND,FUNCT2,HESS2,BL,BU,X,F,G,IW,LIW,W,LW,IUSER,

+ USER,IFAIL)
*

IF (IFAIL.NE.0) THEN

E04LYF.6 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04LYF

WRITE (NOUT,*)
WRITE (NOUT,99999) ’Error exit type’, IFAIL,

+ ’ - see routine document’
END IF
IF (IFAIL.NE.1) THEN

WRITE (NOUT,*)
WRITE (NOUT,99998) ’Function value on exit is ’, F
WRITE (NOUT,99998) ’at the point’, (X(J),J=1,N)
WRITE (NOUT,*)

+ ’The corresponding (machine dependent) gradient is’
WRITE (NOUT,99997) (G(J),J=1,N)

END IF
STOP

*
99999 FORMAT (1X,A,I3,A)
99998 FORMAT (1X,A,4F9.4)
99997 FORMAT (13X,4e12.4)

END
*

SUBROUTINE FUNCT2(N,XC,FC,GC,IUSER,USER)
* Routine to evaluate objective function and its 1st derivatives.
* .. Scalar Arguments ..

real FC
INTEGER N

* .. Array Arguments ..
real GC(N), USER(*), XC(N)
INTEGER IUSER(*)

* .. Local Scalars ..
real X1, X2, X3, X4

* .. Executable Statements ..
X1 = XC(1)
X2 = XC(2)
X3 = XC(3)
X4 = XC(4)
FC = (X1+10.0e0*X2)**2 + 5.0e0*(X3-X4)**2 + (X2-2.0e0*X3)**4 +

+ 10.0e0*(X1-X4)**4
GC(1) = 2.0e0*(X1+10.0e0*X2) + 40.0e0*(X1-X4)**3
GC(2) = 20.0e0*(X1+10.0e0*X2) + 4.0e0*(X2-2.0e0*X3)**3
GC(3) = 10.0e0*(X3-X4) - 8.0e0*(X2-2.0e0*X3)**3
GC(4) = -10.0e0*(X3-X4) - 40.0e0*(X1-X4)**3
RETURN
END

*
SUBROUTINE HESS2(N,XC,HESLC,LH,HESDC,IUSER,USER)

* Routine to evaluate 2nd derivatives.
* .. Scalar Arguments ..

INTEGER LH, N
* .. Array Arguments ..

real HESDC(N), HESLC(LH), USER(1), XC(N)
INTEGER IUSER(1)

* .. Local Scalars ..
real X1, X2, X3, X4

* .. Executable Statements ..
X1 = XC(1)
X2 = XC(2)
X3 = XC(3)
X4 = XC(4)
HESDC(1) = 2.0e0 + 120.0e0*(X1-X4)**2

[NP3390/19/pdf] E04LYF.7

E04LYF E04 – Minimizing or Maximizing a Function

HESDC(2) = 200.0e0 + 12.0e0*(X2-2.0e0*X3)**2
HESDC(3) = 10.0e0 + 48.0e0*(X2-2.0e0*X3)**2
HESDC(4) = 10.0e0 + 120.0e0*(X1-X4)**2
HESLC(1) = 20.0e0
HESLC(2) = 0.0e0
HESLC(3) = -24.0e0*(X2-2.0e0*X3)**2
HESLC(4) = -120.0e0*(X1-X4)**2
HESLC(5) = 0.0e0
HESLC(6) = -10.0e0
RETURN
END

9.2 Program Data

None.

9.3 Program Results

E04LYF Example Program Results

Error exit type 5 - see routine document

Function value on exit is 2.4338
at the point 1.0000 -0.0852 0.4093 1.0000
The corresponding (machine dependent) gradient is

0.2953E+00 -0.5867E-09 0.1173E-08 0.5907E+01

E04LYF.8 (last) [NP3390/19/pdf]

